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Executive Summary

Evaluating the performance of large language models (LLMs) on realistic data analysis tasks is
increasingly important for determining their reliability in policy research and applied analytics.
Most public LLM evaluations rely on simplified or synthetic data, which do not test a model's
ability to filter, weight, and compute valid population estimates—core tasks in statistical practice.
To close that gap, Mathematica developed a prototype LLM Evaluation Framework, a cloud-native
process that measures how accurately and transparently different LLMs generate and execute
analytic code processing of complex, survey-based data in response to prompts that have varying
levels of detail.

We tested whether the different LLMs could select the right variables, apply survey weights,
compute valid statistics, and run basic regression designs. We did this by comparing the LLM
outputs to verified, human-developed, gold-standard estimates and documenting the standardized
error from the results of applying other performance measures. The framework can run parallel
evaluations across model families and versions® in two kinds of workflows: reasoning-only (which
relies solely on the model's internal knowledge to logically decompose and address problems) and
code-execution (which enables the model to generate an analysis plan, execute code against actual
data, and iteratively improve its results).

Taking advantage of a controlled environment with real-world data and tasks used in
Mathematica's data analytics work, this initiative demonstrated success in creating an initial
process for consistently assessing an LLM's output on statistical data—providing a path toward
trustworthy, evidence-based assessment of LLM analytic capability. Moreover, this initiative
provides a scalable foundation for future benchmarking efforts and a transparent reference point
for understanding the strengths, limitations, and constraints of using LLMs in applied research.
Mathematica's approach for evaluating LLMs on frequently used public data sets (for example,
the American Community Survey [ACS]) enables evidence-based judgments of their capability,
transparency, and accuracy for applied research and policy analysis.

Problem Statement

Despite rapid advances in LLMs, there is currently no standardized method for evaluating their
ability to perform statistical reasoning on complex, policy-relevant data sets. In addition, most
public LLM benchmarks such as Massive Multitask Language Understanding (MMLU) and GSM-
8K use text-based tasks to test factual recall or logical reasoning. These benchmarks offer limited
insight into a model's ability to handle structured data, apply survey design concepts, or generate
valid statistical estimates.

T We assessed four frontier models from two model families: (1) Sonnet 4 (released May 22, 2025) and (2) Sonnet 4.5
(released September 29, 2025) from Anthropic’s Claude; and (3) GPT 40 (July 18, 2024) and (4) GPT-5.1 (released
November 12, 2025) from OpenAl. We tried to test other LLMs available through AWS Bedrock such as DeepSeek
and Llama, but the Bedrock API did not support tool and function calling for these versions.
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Social scientists and policymakers study questions whose answers depend on the models’ ability
to perform specific tasks such as filtering microdata, applying sample weights, and computing
statistical estimates of the population sampled in the data. Without systematic evaluation of
how a model performs on these tasks, organizations risk overstating a model's readiness for data
analysis, undermining both research quality and trust in Al-assisted methods.

Recent research underscores the importance of grounding LLM evaluation in real analytic
workflows. The DiscoveryBench study® demonstrated that even advanced reasoning models
perform inconsistently when asked to replicate scientific analyses, achieving only modest accuracy
on real data sets. The Mathematica team wanted to establish a process in which we could prompt
the LLM with descriptive questions like “What is the total number of benefit-eligible veterans in
Alabama who faced employment barriers in 2021?” and then be able to systematically confirm the
quality of the output.

To achieve this, we define a lightweight evaluation framework for assessing LLM performance on
applied statistical tasks. The framework separates the conceptual components of evaluation (what
is being tested) from the specific implementation choices used in this study (how it is tested). In
this paper, we describe the framework briefly and then report results from applying it to real ACS-
based analytic tasks.

Our Framework

Our evaluation framework consists of:

> A data set with survey design features and a set of descriptive and causal analytic questions

> Quantitative and qualitative evaluation metrics

> Explicit tooling constraints (reasoning-only versus code execution)

> A controlled execution environment

Together, these components focus evaluation on the kinds of inferential reasoning that underlie

applied research and provide a structured way to assess whether model outputs align with
statistical best practice when applied to real-world survey data.

Curating the data set

For the data set and analytic task components of the framework, we built 35 validated question-
and-answer pairs using the ACS Public Use Microdata Sample (PUMS) for the years 2010 through
2024.3 We chose the ACS because it provides a rich and policy-relevant data set containing
hierarchical person- and household-level records with sampling weights and replicate weights.

2 Majumder, Bodhisattwa Prasad, et al. “DiscoveryBench: Towards data-driven discovery with large language
models.” arXiv preprint arXiv.2407.01725 (2024)

3 We evaluated 24 descriptive questions and 11 validated difference-in-difference estimates.
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We drew on Mathematica's deep expertise using ACS data to answer a variety of real-world
descriptive and causal analytic questions such as estimating individual eligibility for program
benefits, and identified clean, quality-assured data sets that we used to generate question-and-
answer pairs for population estimates and difference-in-difference estimates.*

Prompt design and workflows

For the tooling-constraint component of the framework, we ran parallel evaluations across two
core workflows, each designed to isolate different dimensions of model reasoning:

¢ Reasoning-only. The model answers an analytic question without data access, relying solely on
its internal knowledge. This baseline helps detect data leakage (when the model's answer reflects
memorized information rather than true reasoning) and assess how much improvement comes
from genuine computation used in the code-execution workflow. For causal inference questions,
the prompts specified a difference-in-difference design, including the definition of comparison
groups, pre/post periods, and required clustering and weighting choices. This allowed us to
assess not only whether models could compute a treatment effect, but whether they could
correctly implement each component of the causal design.

® Code execution. The model generates executable Python code to answer an analytic question
using data accessed through a controlled application programming interface (API), iteratively
refining the analysis as needed. This simulates how an analyst would interact with a data set and
reason through the steps of loading data, filtering relevant rows and columns, making necessary
data transformations, and computing results.

Both workflows were orchestrated through a fully serverless pipeline using Amazon Web Services
(AWS) Lambda, Bedrock, OpenAI API, and LangChain. All runs were executed in a restricted cloud
environment with controlled data access interfaces.

Evaluation metrics

For the evaluation metrics component of the framework, Mathematica compared each model's
output against verified ACS benchmark estimates using a mix of quantitative and qualitative
measures.’ The goal was to assess not only how close model-generated numbers were to the
true values, but also whether models followed valid statistical steps to get there. For numeric
performance metrics, we center this position paper’s discussion on the exact match rate for
simplicity; Appendix Exhibit A.1 presents other metrics that we looked at.

We also qualitatively analyzed whether the model correctly applied survey weights, filtered data
appropriately, and followed valid statistical methods and conducted error analysis to identify
patterns of failure and/or confusion. For causal inference tasks requiring regression models, we
reviewed model-generated code to assess whether regressions followed the specified formula; used
the expected Python libraries; and applied the correct weighting, clustering, and filtering operations.

4 To reduce this effort, we replicated the existing workflows and point estimates in Python because LLMs such as
ChatGPT run Python code in their environments and not Stata or R.

5 This analysis does not assess run-to-run variability or within-model variance across repeated executions of identical
prompts; results therefore reflect point accuracy rather than stability metrics.
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Our Implementation

Mathematica's LLM Evaluation Framework runs entirely in the cloud and was designed to be both
secure and reproducible. It processes questions through two workflows: one in which the model
can query the data and writes and executes Python code (code execution) and another in which it
reasons using the model's knowledge base without access to the data (reasoning-only).

The tool uses AWS Lambda to run each test in isolation and LangChain to manage interactions
between models, data, and prompts. All data access takes place through a controlled interface that
allows models to load only approved variables and return structured outputs, ensuring consistency
and transparency. Results are stored automatically for comparison and documentation. Each
evaluation follows a consistent pattern:

1. A set of analytic questions is uploaded to the tool.

2. The framework sends each question to one or more models as specified.

3. Models either generate executable code to analyze the ACS data or produce a direct answer.
4. Code runs in a secure cloud environment using local copies of the data set.

5. Models are given the opportunity to iterate and test their approach a fixed number of times.

6. The resulting estimates, explanations, and metadata are saved for review.

This approach allows many models to be tested in parallel and ensures that every step of the
reasoning and computation can be traced and replicated.

In addition to evaluating analytic reasoning, the framework was designed with secure-
environment controls enabling safe use of microdata that may include sensitive or personally
identifiable information. The Mathematica LLM Evaluation Framework's architecture supports
sandboxed execution, role-based access, versioned logging and restricted data flows, offering an
early building block for using LLMs with sensitive microdata in trusted environments.

Results

Our evaluation across 35 human-validated questions revealed clear performance patterns tied to
workflow design, model family, model edition, and the statistical complexity of the task.

Reasoning-only. In the reasoning-only workflow—in which models attempt to answer questions
purely based on reasoning and prior knowledge—none of the models achieved an exact match. For
causal questions, models frequently produced results that differed by orders of magnitude from
the validated results. In this setting, models rely on broad heuristics such as multiplying state-
level population guesses by assumed participation rates rather than attempting to reconstruct the
required population universe. As a result, this workflow serves as a useful data leakage check but
cannot support policy-relevant analysis. Although not unexpected given that this task requires
access to structured data, sampling weights, filters and variable definitions, the result underscores
the baseline gap between reasoning-only and data-driven workflows.
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Code execution. In the code-execution workflow, in which the model generates and runs analytic
code on the ACS data, performance improved notably compared with the reasoning-only setting.
However, improvements varied by model and by type of statistical task.

All frontier models achieved high accuracy on descriptive tasks in this setting, but with meaningful
differences across models:

® Claude Sonnet 4, Sonnet 4.5 and GPT-5.1 performed similarly well, with exact-match rates
between 88—92 percent.

® GPT-40 consistently trailed the other frontier models, with an exact-match rate of 75 percent.

For causal inference questions, performance diverged more notably by model:
® GPT-5.1 achieved near-perfect accuracy with an exact-match rate of 100 percent.

e Claude Sonnet 4 and Sonnet 4.5 also achieved relatively high accuracy with 82 percent and 73
percent exact-match rates, respectively.

® GPT go achieved a 64 percent exact-match rate, considerably lower than that of the other models.

Unlike descriptive tasks, for which all models have relatively straightforward instructions, causal
inference requires several coordinated decisions: selecting the correct comparison groups,
defining pre/post periods, applying weights, and estimating a treatment effect through regression.

Tooling. This evaluation also drew attention to tooling and framework design as key enablers: the
agent-tooling paradigm (querying data via custom tools, sandboxed execution, and standardized
prompts) proved essential for reliably measuring performance differences and tracing methods.
Likewise, causal inference tasks (in this case, difference-in-differences) surfaced unexpected model
behavior: for example, some models did not cluster standard errors on the specified cluster and
instead defaulted to clustering at the level of fixed effects (for example, state-year); others managed
the correct clustering but used regression libraries that were different from our own solutions

(for example, statsmodels versus linear models). However, when different package choices resulted
in differences in the output estimate, this was usually due to inappropriate modeling options or
inappropriate filtering of the data.

Together, these findings affirm that the combination of structured data set access, analytic tooling,
and reproducible workflows yields measurable improvements, but also that substantial room
remains for models to handle the full complexity of applied statistical estimation.

Lessons Learned

Testing large language models (LLMs) on real survey data revealed both the promise and current
limits of their analytic reasoning. Across dozens of expert curated questions drawn from the
ACS microdata, models exhibited clear differences in how they assess metadata, employ tooling,
interpret prompt structure, and execute statistical tasks.
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Data and metadata matter

Model accuracy depended on how clearly variables were labeled and documented. When variables
were not sufficiently documented and clearly defined, the models tended to select the wrong
outcome variables and apply the wrong filters on the data. This occurred in part because the
prompts described outcomes in plain, non-technical language, and the model had to infer which
technical variable in the data set matched that description. When data sets contained multiple
columns with similar names, the model sometimes mapped the plain-language description to

the wrong variable. Overall, this finding underscores the notion that data usability and metadata
clarity are foundational for Al readiness in analytic workflows.

Tool-calling improves reliability

Access to code execution substantially improved accuracy for descriptive estimates across all models,
reducing errors by several orders of magnitude relative to reasoning-only. However, code execution
did not guarantee success for causal inference: although GPT-5.1 consistently produced correct
difference-in-difference estimates, other models generated code that was syntactically valid but
methodologically incorrect. Some models dropped required groups or years, added unintended fixed
effects, or mis-specified the interaction term. Tool-calling is necessary but not sufficient for valid
causal estimation—models must also reliably adhere to econometric design constraints.

Prompt structure shapes outcomes

Well-structured prompts that clearly defined available variables (including names, types, weights)
and articulated the desired output format led to sharper and more accurate responses. In contrast,
prompts that left variable definitions implicit or skipped specification of weights resulted in
degraded performance. This suggests that prompt engineering remains a critical lever for applying
LLMs in statistical workflows. In addition, causal inference prompts revealed that models interpret
instructions differently depending on internal reasoning styles. Claude Sonnet 4.5, for example,
tended to introduce additional data transformations or modeling choices that were not requested,
leading to lower accuracy. These findings suggest that future prompting strategies may require
more rigid templates or guardrails, particularly for multi-step causal designs.

Statistical competence remains uneven

Statistical competence varied by model family and task type. All frontier models performed well
on descriptive statistics when granted data access, but only GPT-5.1 consistently implemented the
correct causal design and achieved near-perfect accuracy on difference-in-difference estimates.
Claude Sonnet 4.0 and 4.5 achieved partial success, with errors driven by mis-specification of
interaction terms and incorrect filtering. GPT-40 underperformed on both descriptive and causal
tasks relative to the other frontier models. These results highlight that small differences in model
reasoning style can produce significantly different analytic outcomes.

Reproducibility is achievable

Despite varied accuracy levels, every analysis run was logged, versioned, and traceable, from prompt
version and model type to code executed, data set snapshot used, and output logs. That demonstrates
the potential for reproducible and automated evaluation of LLMs on complex data sets. This
represents a scalable foundation for future benchmarking efforts as models continue to evolve.
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In Conclusion

Testing LLMs on federal statistical data used to generate population estimates and measure outcomes
revealed both the promise and current limits of their analytic reasoning. By using a data set based on
ACS microdata with its complex weights, filters, subgroup definitions, and metadata, the framework
surfaces meaningful differences in model design, tooling, prompt structure, and data usability.

Advancing analytic readiness

As noted, one of the most important implications of this exercise is that reasoning alone is
insufficient for credible statistical estimation in policy-relevant settings. Our results show that
models with access to data and code-execution capability deliver substantially higher accuracy for
descriptive tasks. This suggests that any organization considering LLM-powered analysis should
treat data set access, tool invocation, and workflow automation as prerequisites for trustworthy
output, not optional add-ons.

Implications for prompting, metadata, and workflow design

We found that metadata clarity, prompt structure, and tooling architecture matter as much as or
more than the model version used. In practical terms, this means that before placing an LLM into
an analytic workflow, organizations should:

e Ensure that data sets include clear data element labels (such as table and column names and
metadata) and that documentation used as context for the LLM include unambiguous variable
definitions

e Provide prompts that explicitly define analysis tasks, variables, weights, sample design, output
format, and error structure

e Use frameworks that support model code-calling, sandboxed execution, version control, and
traceability

By combining tooling, metadata clarity, and workflow controls, the tool helps shift an LLM from a
"black box" output to one whose analysis can be more closely governed, reviewed, and traced.
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Appendix

Exhibits A.1 and A.2 present model performance metrics for the descriptive and the difference-in-
difference questions, respectively. We report the following metrics:

® Mean absolute error (MAE). On average, how far off were the model's answers from the verified
numbers?

¢ Root mean square error (RMSE). If the model makes very large errors, RMSE weights them more
heavily.

¢ Relative absolute error (RAE). Expresses the model's error as a share of the verified value.

® Symmetric mean absolute percentage error (SMAPE). Handles miniscule or near-zero numbers
better than RAE by balancing the difference between estimates and verified values.

* Normalized root mean square error (NRMSE). How much, in relative terms, the model tends to
miss the mark on big numbers.

e Exact match rate (EMR). How often did the model get the number exactly right?

Exhibit A.1. Performance metrics for frontier LLMs, descriptive questions only

Symmetric

Normalized mean
Root mean root mean absolute
Mean square square percentage
absolute error match rate | Number of error error
error (MAE) | (RMSE) (NRMSE) (SMAPE)
Reasoning-only
Claude 8,476,246 20,704,1M 0% 0 593 104%
Sonnet 4
Claude 8,019,081 19,441,147 0% 0 557 92%
Sonnet 4.5
GPT 40 11,362,903 26,997,163 0% 0 773 1M%
GPT 5. 4,271,274 12,485,188 0% 2 344 100%

Code execution

Claude 26,414 87,677 88% 0 3 3%
Sonnet 4

‘S:Lan”nde‘: 45 360,227 1733129 92% 0 50 4%
GPT 40 424,604 1,915,660 75% 1 54 14%
GPT 5. 360,364 1733129 88% 0 50 4%

Note: We evaluated LLMs with 24 validated descriptive questions, using a custom cleaned data set to assess program
eligibility.
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Exhibit A.2. Performance metrics for frontier LLMs, difference-in-difference questions

Symmetric
mean
Normalized absolute

Diff-in-diff Mean Root mean root mean | percentage
questions absolute square error | Exact match | Number of | square error Error
performance| error (MAE) (RMSE) rate (EMR) (NRMSE) (SMAPE)

Reasoning-only

Claude 0.024 0.029 0% 5 2750 188%
Claude 0.025 0.039 0% 2 3086 179%
GPT 40 0.051 0.051 0% 8 6031 199%
GPT S 0.006 0.007 0% 2 596 196%
Code execution

Claude | 0.001 0.002 91% 0 160 18%
Clude 0.003 0.005 73% 0 400 54%
GPT 40 0.001 0.004 64% 3 327 25%
GPT 51 0.000 0.000 100% 0 1 0%

Note: We evaluated LLMs with 11 validated difference-in-difference estimates, using a custom cleaned data set to
assess program eligibility.
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