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Methods
	› Built 35 validated question/answer pairs leveraging 

the American Community Survey (ACS) Public Use 
Microdata Sample (PUMS)

	› Evaluated models under two tooling constraints: 
reasoning-only and code execution

	› Compared model outputs to verified benchmark 
estimates using quantitative and qualitative metrics

	› Executed all runs in a secure, serverless cloud 
environment (AWS Lambda, Bedrock, OpenAI API, 
LangChain)

Findings
•	 Code-execution workflows substantially improved 

accuracy, with performance varying by model family.

•	 Reasoning-only workflows produced large errors and 
served primarily as a data-leakage check.

•	 Statistical competence differed meaningfully across 
models, particularly for causal inference tasks.

•	 Small differences in model reasoning behavior led to 
large differences in analytic outcomes.

Background 
Most public LLM benchmarks do not test a model’s ability to filter microdata, apply survey 
weights, or compute valid population estimates—core tasks in statistical practice. As a result, 
existing benchmarks offer limited insight into whether LLMs can perform applied statistical 
reasoning on complex, policy-relevant data sets.

Objective
Develop a cloud-native evaluation framework to assess how accurately and transparently LLMs 
perform applied statistical analysis on complex, survey-based data.
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Table 1. Accuracy of LLMs when allowed to analyze 
data through code execution1

Table 2. Model error rates by question type, 
with and without code access2

1 Accuracy is measured as the proportion of answers that exactly 
match verified benchmark values.

2 Error is measured using symmetric mean absolute percentage error,  
which captures the average percentage difference between model  
estimates and verified values. Lower values indicate more accurate results.
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	� Next steps
•	 Develop additional prompting 

strategies with templates, particularly 
for multi-step causal inference tasks

•	 Extend automation of the evaluation 
framework to support scalable 
deployment across data sets, models, 
and analytic tasks

Conclusions
•	 Organizations considering LLM-powered analysis 

should treat data set access, tool invocation, 
and executable workflows as prerequisites for 
trustworthy output.

•	 Differences in statistical competence across models 
remain substantial, especially for causal inference tasks.

•	 Data governance and documentation quality materially 
affect model performance; poorly labeled variables or 
ambiguous metadata degrade analytic accuracy.

•	 Structured frameworks that combine real data, 
controlled tooling, and reproducible execution enable 
evidence-based assessment of LLM analytic readiness.

For more information, contact anigendazarate@mathematica-mpr.com

Whether strengthening data systems, advancing analytics, or applying artificial 
intelligence responsibly, Mathematica is a trusted modernization partner, helping 
clients deliver efficient, effective programs that improve public well-being. Learn 
more at Mathematica.org.
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